网站首页 >> 数学文化 >> 正文
简介: 冯·诺依曼鲜明的个性:严格地说,匈牙利语不是一种四海通行的语言,所以所有受过教育的匈牙利人必须能操比他们本国语更具广泛使用价值的一种或几种语言。冯·诺 依曼一家在家里都说匈牙利语,然而他能极熟练地使用

冯·诺依曼鲜明的个性:严格地说,匈牙利语不是一种四海通行的语言,所以所有受过教育的匈牙利人必须能操比他们本国语更具广泛使用价值的一种或几种语言。冯·诺
依曼一家在家里都说匈牙利语,然而他能极熟练地使用德语、法语,当然还有英语。他说英语的速度很快,在语法上也经得起推敲。但是在发音和句子结构方面,不免使人想起很像德语。他的“语感”还不能算是尽善尽美,遣词造句不免复杂。

他准备讲演时几乎从来不用笔记。有人看到他对一般听众作非数学专业的讲演开始前五分钟作的准备。他坐在研究院的休息室里,在一张卡片上粗略地涂写上只言片语,比如:“动机的形成,5分钟;历史背景,15分钟;与经济学的关系,10分钟……”作为一个数学讲演者,他会使人感到应接不暇。他说话很快,但吐字清楚,用词确切,讲解透彻。比如,如果一个课题可能有四种公理方法,大多数教师只满足于展开一个或最多两个系统,最后再附带提及其他两个。冯·诺依曼则不然,他喜欢把情况的“全部图景”描绘出来。也就是说,他会具体描述从第一导致第二的最短捷径,从第一至第三,然后再继续下去一直到12个可能性为止。他讲课时擦黑板太快,十分令人不愉快。他板书讨论中关键性的公式,当公式中的符号可由别的符号来替代时,他不作适当的修改重写公式以标明替代部分,与此相反,他擦抹去可替换的符号,代之以新的符号,这种做法不免使记笔记的听讲者泄气,特别是他为了继续他的推理过程同时还一直滔滔不绝才智横溢地讲个不停。

他所阐述的原理是那么平易自然,他的风格是那样的令人折服,所以要听懂他的讲演,不必一定是个数学行家。然而,听讲者几小时以后会感到,一般的记忆力已支撑不住因果内含的微妙平衡了,听讲者会感到迷惑和不足,需要听取进一步的讲解。作为一个数学著作家,冯·诺依曼的思路清晰,但脉络分明稍逊。他的著作行文有力,然而雅致尚嫌不足。他似乎喜欢搞细微末节和不必要的重复,各种数学符号运用得过于详尽而有时会令人摸不着头脑。他在一篇论文中首次使用了一种普通函数符号的引申,以此来保持逻辑上的正当区分,而不顾这种明显的区分事实上是无关紧要的。除了运f(x)的标准符号以外,他还使用了一种f((x))的符号。读者必须进行琐细的分析,由f((x))求得f(((x))),最后再求得f((((x)))),所以会出现这样的方程式:(f((((x)))))2=f((x)))要消化吸收这种方程,一定要先除去外皮才行,一些出言欠逊的学生把这篇论文中的公式称为冯·诺依曼的洋葱头。

冯·诺依曼十分注意细节,原因之一可能是他感到自己动手运算求证要比博引旁证约定俗成的定规要来得简捷。结果就难免使人产生一种印象,他似乎对标准文献资料了解甚少。如果他需要从勒贝格积分理论中援引若干事实,即使是熟悉的事实,他总是情愿全力以赴,从最基本的符号下定义开始,逐步展开一直到他能加以引用的步骤。在第二篇论文中,如果他又需要引用积分理论,他又会从头做起。

论文中一长串的尾标,添标上又加上添标,论文中充满了可避免的代数计算,这在他看来并没有什么不好。其中的原因可能是他从大处着眼,不愿树木淹没在森林之中。他乐于考虑数学问题的各个方面,而且思维周密。他著书立说时从不以居高临下的口气对读者说话,仅是告诉读者他的见解而已。这种做法倒也高明,结果是很少有人能找到机会可以给冯·诺依曼的著作提出批评指正的。

冯·诺依曼鲜明的个性

因为冯·诺依曼30岁以后便与教育机构失却了正式的关系,所以他的学生人数是屈指可数的;他一生中只指导过一篇博士论文。然而经过讲演和不拘形式的谈话,他在自己的周围云集了一小批弟子,弟子们各自继承了他研究的数学科学的某个领域。这批弟子中有J.W.卡尔金,J.查尼,H.H.戈尔茨坦,P.R.哈尔姆斯,I.哈尔普林,O.摩根斯顿,F.J.默里,R.沙顿,I.E.西格尔,A.H.陶布,以及S.乌拉姆。

冯·诺依曼决不因为自己能敏锐地把握事物而驻足不前,他是一个勤奋工作的人。他的夫人说:“他在家写作总要到深夜或黎明时分才搁笔。他的工作能力惊人。”除了在家里工作以外,他在办公室也孜孜不倦地工作。他每天一早就到研究院,一直到很晚才离开,其间他十分珍惜时光,决不让光阴白白流逝。他办事事无巨细都安排得井井有条,文章校对也很细心。冯·诺依曼在数学科学上对学问的探求是激流勇进的,这是他引人注目同时时又令人钦佩的品质。他在数学领域的学问和知识可谓广博,从他的整个知识结构看还不免有缺陷,特别是数论和代数的拓扑。

冯·诺依曼鲜明的个性

聪明才智,加上敏捷和勤奋必然会结出丰硕的成果。冯·诺依曼的著作《选集》一书中,收集了他的150余篇文章,其中约60篇是纯粹数学(集合论、逻辑、拓扑群、测度论、遍历论、算子论以及连续几何学),20篇属于物理学,60篇属于应用数学(包括统计学、博弈论以及计算机理论),还有几篇零星的文章。

本文标签: 依曼   鲜明   个性  

温馨提示:本文是作者 panpan39 的原创文章,转载请注明出处和附带本文链接!

六班网

六班网

www.6ban.cn

最近发表
网站分类
标签列表
搜索
sitemap网站地图

Copyright @ 2019-2024 六班数学网 All Rights Reserved.

本站所发表的文章版权归作者所有,转载或抄袭他人作品,带来的后果与本站无关。若存在您非授权的原创作品,请第一时间联系本站删除

切换白天模式 切换夜间模式 白天返回顶部 夜间返回顶部