学校因为上级要求每周开展了5节体育课,上下午各开设了20多分钟大课间,又要求所有行政老师都去陪学生。 这种做法真心不能苟同。 &nb
转眼一学期已过了,本学期接手两个数学基础问题较多的班级,从接手的平均40多分,尤其八2七年级基础知识最高分104分的七年级的基础上,尤其本学期面对一周仅仅5节数学课的情况下,高效的让两
毕达哥拉斯学派的发现:提起“勾股定理”。人们便很容易与毕达哥拉斯联系起来,西方数学界一般把“勾股定理”叫做“毕达哥拉斯定理”。但据本世纪对于在美索不达米亚出土的楔形文字泥板书所进行的研究,人们发现早在毕达哥拉斯以前1000多年的古代巴比伦人
欧几里得怎么证明质数个数是无限的:数论与几何学一样,是最古老的数学分支。欧几里得的《几何原本》的七、八、九章,讲的就是数论。对于质数的研究,在数论中占有很重要的位置。我们知道,正整数是由1、质数(也叫素数)与合数这三类数组成的。 一个大于
五次方程的挑战:初中的主要数学课程是几何与代数。“代数”一词,是九世纪时亚细亚的数学家阿里·花拉子模首先使用的。 英文的“Algebra”一词,是从阿里·花拉子模那里来的。 我国从1711 年清朝康熙五十年起,先后音译作“阿尔朱巴尔”、
等分圆周的方法:人们在研究尺规作图三大难题中,还发现了许多类似的难题。求等圆周的线段的问题,就是一个与化圆为方密切相关的难题。此外,流传很广的是等分圆周问题,它是和三等分角相仿的难题。这个问题又叫做按尺规作图,作圆内接正多边形问题,或者叫做
一场莫名其妙的战争 “打仗啦!打仗啦!”弟弟小华一溜烟似的跑进了屋。哥哥小强正在专心做题,小华这一喊,把他吓了一跳。“哪里打仗啦?”小强问。“山那边。”小华抹了一把头上的汗,上气不接下气地说,“山那边来了两支军队,真刀真枪地打得可凶啦!哥
费尔马定理:费尔马是一个十分活跃的业余数学家,喜欢和别人通信讨论数学问题。他差不多和同时代的数学家都通过信,受到人们的敬重。费尔马经常提出一些难题,寄给熟人,请他们解答,然后再把这些解答与自己的解答对照。他提出的猜想,有被否定掉的;但是他证
罗巴切夫斯基几何:欧几里得几何(或称抛物几何)是我们大家所熟悉的,然而几何世界是广阔的,并非欧氏几何一枝独秀,还有着各式各样的非欧几里得几何,简称非欧几何。但通常意义下,非欧几何是指罗巴切夫斯基几何(或称双曲几何)和黎曼几何(或称椭圆几何)
影子的数学应用:自古以来,人们仰望遥远的天空时,就会情不自禁地想道:“天到底有多高呢?”由于天高不可测,人们便想知道,挂在天空的太阳离地到底有多远。孔 子不能回答“小儿辩日”的问题,然而,初生的牛犊不怕虎,有一个儿童却敢于当着大人的面巧辩太
抽象代数学的诞生:伽罗华于1811年10月26日,出生在法国巴黎附近的一个小市镇上。他从16岁起,就致力于五次以上方程的根式解法的研究。伽罗华不仅对前辈数学家拉格朗日等的工作,有深入的学习和了解;而且对同时代的数学家阿贝尔等的成果,也有研究
六班网
www.6ban.cn